PREFERENTIAL EFFECTS OF ANTI-BIOTICS ON *E. COLI* STRAINS CARRYING PLASMIDS

Susumu Mitsuhashi, Shizuko Iyobe, Tamiko Kubota, Masa Hamada and Hamao Umezawa

Department of Microbiology, School of Medicine, Gunma University, Maebashi, and Institute of Microbial Chemistry, Tokyo, Japan

(Received for publication May 16, 1974)

R Factors, capable of conferring multiple drug resistance on their host bacteria, are distributed among many species of bacteria isolated from human beings, livestock^{1,2)} and cultured fish^{3,4)}, creating problems in practical medicine and hygiene. It is therefore an urgent problem to find agents that can eliminate R factors from their host bacteria or that can preferentially kill bacteria possessing R factor. We have reported previously that the antibiotic macarbomycin perferentially kills *Escherichia coli* strains carrying an R factor, resulting in the elimination of resistant bacteria from mixed cultures consisting of both drug-resistant and sensitive cells^{5,6)}. This result raised the possibility that bacterial strains carrying R factors may be removed as a result of their susceptibility to certain chemotherapeutic agents.

We have examined various antibiotics for their ability to inhibit the growth of bacteria carrying R factors. The method was similar to that previously described⁵⁰; *Escherichia coli* K12 strain, W2241 (*lac*⁻, lactose nonfermentable) and W2241 carrying R-factor R100 (or F-*lac.tet* factor) were used. R-factor R100 confers resistance to tetracycline (TC), chloramphenicol (CM), streptomycin (SM) and sulfanilamide (SA) on its host. F-*lac. tet* is a recombinant between an F-*lac* episome and the TC-resistance determinant (*tet*) of $R_{10}(TC. CM. SM. SA)^{\tau}$. Antibiotics to be

		Mixed culture					
	Antibiotics	W2241/F-lac. tet ⁺			W2241/R100+		
	Antibiotics	Added (µg/ml)	Growth	Percent of sensitive cells in population*	Added (µg/ml)	Growth	Percent of sensitive cells in population*
_	Althiomycin	1	+#	48	0.25	+!!-	40
	Azomycin	20	#	65	20	++	
	Daunomycin	0.5	#	88	0.5	++	
	Diumycin	100	++	84	100	++	
	Griseolutein A	1	+=+	30	3	+11+	90
	Iyomycin	5	+#+	64	5	+++	16
	Kasugamycin	5	++	68	10	++-	_
	Mitomycin C	0.1		34	0.2		80
	Neopluramycin	5	+++	68	5	+	28
	Netropsin	2	+++	41	10	++-	_
	Panosialin	200		22	400	++-	
	Phleomycin	0.5	++		0.2	+11-	22
	Streptothricin A-249	10	++-	98	10	#	
	Xanthomycin	5		44	10	#	-

Table 1. Effect of antibiotics on the growth of E. coli carrying plasmids

One ml of mixed culture in BHI broth was prepared by inoculating a mixture of *E. coli* W2241 carrying a plasmid (10° cells) and W2241 without plasmid (10° cells) and by incubating with or without antibiotic at 37° C. After overnight cultivation, the growth level of the culture was noted, and the number of W2241 cells without plasmid counted as drug-sensitive cells by the replica plating method⁹.

Growth; #, $10^{\circ} \sim 10^{\circ}$; #, $10^{7} \sim 10^{\circ}$; +, $10^{\circ} \sim 10^{7}$ cells per ml.

* The ratio in a control culture without antibiotic was less than 10%. -, less than 10%.

examined were added to a mixed culture of W2241 and W2241 carrying R100 (or F-lac. tet), and their effect was examined by comparing the number of drug-sensitive survivors with drug-resistant ones. The results are shown in the Table 1. Among 14 antibiotics, 5 were found to have an inhibitory effect on both W2241 R100⁺ and W2241 F-lac.tet⁺, 8 were only effective against W2241 F-lac. tet⁺ and the remaining one was only effective against W2241 R100⁺. The strain carrying Flac.tet was more susceptible to antibiotics than that carrying R100. Three antibiotics, streptothricin, daunomycin and diumycin efficiently inhibited the growth of W2241 F-lac. tet⁺ but not W2241 R100⁺. On the other hand, mitomycin C and griseolutein were especially effective against W2241 R100⁺, and also inhibited the growth of W2241 F-lac.tet+ to some extent. The difference in susceptibility to antibiotics may be due to changes in structure of bacterial cells subsequent to infection with either an R or F factor.

Next, we examined the plasmid-curing effect of these antibiotics on E. coli W2241 carrying a plasmid. W2241 R100+ or W2241 F-lac. tet^+ was cultured at 37°C in BHI (Difco) broth supplemented with various concentrations of each antibiotic. After 18-hour incubation, the culture which contained the highest concentration of drug showing bacterial growth, was diluted and spread on EMBlactose agar⁸⁾; colonies were replica-plated⁹⁾ onto antibiotic plates and scored for resistance characters. It was found that about 1% of W2241 F-lac.tet+ cells lost the plasmid after incubation with mitomycin C, the other antibiotics failed to eliminate F-lac.tet or R100 factor from their hosts. This indicates that the preferential drug-inhibition of W2241 carrying a plasmid in the mixed culture can be explained by a preferential killing or static effect on bacteria carrying a plasmid.

There are two modes by which a plasmid can be eliminated from a bacterial population; one is the elimination of plasmid from its host by inhibition of plasmid DNA replication^{10,11,12)}, and the other is preferential inhibition of the growth of bacterial cells carrying a plasmid, resulting in selection for cells which had spontaneously lost the plasmid^{13,14)}. Using the mixed-culture method as described above, it is possible to test drugs for their ability to eliminate bacterial cells carrying an R factor from a bacterial population.

References

- MITSUHASHI, S.: Epidemiology of R factors. *In* Transferable drug-resistance factor R. Tokyo University Press, Tokyo, 1970
- TERAKADO, N.; H. AZECHI, K. NINOMIYA & T. SHIMIZU: Demonstration of R factors in Bordetella bronchiseptica isolated from pigs. Antimicr. Agents & Chemoth. 3: 555~558, 1973
- WATANABE, T.; T. AOKI, Y. OGATA & S. EGUSA: R factors related to fish culturing. Ann. N.Y. Acad. Sci. 182: 383~410, 1971
- AOKI, T.; S. EGUSA, T. KIMURA & T. WATANABE: Detection of R factors in naturally occurring *Aeromonas salmonicida* strains. Appl. Microbiol. 22: 716~717, 1971
- MITSUHASHI, S.; S. IYOBE, H. HASHIMOTO & H. UMEZAWA: Preferential inhibition of the growth of *Escherichia coli* strains carrying episomes. J. Antibiotics 23: 319~323, 1970
- IYOBE, S.; S. MITSUHASHI & H. UMEZAWA: Relationship between sex-pili formation and macarbomycin sensitivity in *Escherichia coli*. J. Bact. 108: 946~947, 1971
- HARADA, K.; M. KAMEDA, M. SUZUKI & S. MITSUHASHI: Drug-resistance of enteric bacteria. II. Transduction of transmissible drug-resistance (R) factors with phage epsilon. J. Bact. 86: 1332~1338, 1963
- LEDERBERG, J.: Isolation and characterization of biochemical mutants of bacteria. Methods Med. Res. 3: 5~22, 1950
- LEDERBERG, J. & E. M. LEDERBERG: Replica plating and indirect selection of bacterial mutants. J. Bact. 63: 399~406, 1952
- HIROTA, Y.: The effect of acridine dyes on mating type factors in *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 46: 57~64, 1960
- IKEDA, Y.; T. IJIMA & K. TAJIMA: Elimination of F-episome from a male strain of *Escherichia coli* by treatment with sarkomycin and a related antibiotic. J. Gen. Appl. Microbiol. 13: 247~254, 1967
- 12) BOUANCHAUD, D. H.; M.R. SCAVIZZI & Y.A. CHABBERT: Elimination by ethidium bromide of antibiotic resistance in *Enterobacteria* and *Staphylococci.* J. Gen. Microbiol. 54: 417~ 425, 1969

- YOSHIKAWA, M. & M. G. SEVAG: Sensitivity of *Escherichia coli* to atabrine conferred by R factor and its potential clinical significance. J. Bact. 93: 245~253, 1967
- SALISBURY, V.; R. W. HEDGES & N. DATTA: Two modes of 'curing' transmissible bacterial plasmids. J. Gen. Microbiol. 70: 443~452, 1972